Marking scheme
Any other sofution that leads to correct results will be scored accordingly.

Theoretical Problem nr. 3-Water world

\mathcal{A}.	Part A. Falling droplets		Points
A.1.	$\begin{aligned} & p_{\text {up }}+p_{\text {hidro }}=p_{\text {down }} \\ & \sigma=\frac{\rho \cdot g \cdot h \cdot\left(h^{2}-\delta^{2}\right)}{2 \delta} \quad \sigma \cong \frac{\rho \cdot g \cdot h^{3}}{2 \delta} \end{aligned}$	0.3p	0.5p
	$\sigma=6.5 \times 10^{-2} \mathrm{~N} \cdot \mathrm{~m}^{-1}$	0.2p	
B.	Part B. Stalagmometer		Points
B.1.	$G=F_{\sigma} \quad R=\sqrt[3]{\frac{3 \cdot d \cdot \sigma}{4 \cdot g \cdot \rho}}$	0.3p	0.5p
	$R=7.9 \times 10^{-4} \mathrm{~m}$	0.2p	
B.2.	$G+F_{H}=F_{\sigma} \quad\left\{\begin{array}{l} R_{H}=\sqrt[3]{\frac{3}{4}\left(\frac{d \cdot \sigma}{\rho \cdot g}-\frac{d^{2} \cdot H}{4}\right)} \\ R_{H}=R \cdot \sqrt[3]{1-\frac{d \cdot H \cdot \rho \cdot g}{4 \sigma}} \end{array}\right.$	0.3p	0.5p
	$R_{H}=7.4 \times 10^{-4} \mathrm{~m}$	0.2p	
C.	Part C. Electrically charged droplets		Points
C. 1	The variation of the volume of the conductive drop, if its radius increases with the infinitely small amount ΔR $\Delta V=\frac{4 \pi}{3} \cdot\left[(R+\Delta R)^{3}-R^{3}\right] \cong 4 \pi \cdot R^{2} \cdot \Delta R$	0.3p	2.0p
	Variation of the capacitance of the spherical capacitor represented by the drop $\Delta C=4 \pi \cdot \varepsilon_{0} \cdot \Delta R$	0.3p	
	The variation of the electrostatic energy, accumulated in the drop at the constant potential $\Delta W_{\varepsilon}=2 \pi \cdot \varepsilon_{0} \cdot \phi^{2} \cdot \Delta R$	0.4p	
	Mechanical work L_{ε} of electrostatic pressure p_{ε}, when increasing the volume with ΔV $\left\{\begin{array}{l} L_{\varepsilon}=p_{\varepsilon} \cdot \Delta V \\ L_{\varepsilon}=p_{\varepsilon} \cdot 4 \pi \cdot R^{2} \cdot \Delta R \end{array}\right.$	0.4p	
	$\Delta W_{\varepsilon}=L_{\varepsilon}$	0.3p	
	$p_{\varepsilon}=\frac{\varepsilon_{0} \cdot \phi^{2}}{2 R^{2}}$	0.3p	

C.2.	The expression of the pressure exerted towards the outside of the drop, just before the moment of its spraying $p_{\varepsilon}=\frac{\varepsilon_{0} \cdot \phi_{\text {max }}^{2}}{2 R^{2}}$	0.2p	1.0p
	The expression of the pressure exerted towards the inside of the drop $p_{\sigma}=\frac{2 \sigma}{R}$	0.2p	
	$p_{\sigma}=p_{\varepsilon}$	0.2p	
	$\phi_{\max }=2 \cdot \sqrt{\frac{\sigma \cdot R}{\varepsilon_{0}}}$	0.2p	
	$\phi_{\text {max }}=5.4 \times 10^{3} \mathrm{~V}$	0.2p	
C.3.	The pressure due to the surface tension in each of the n small drops $p_{\sigma \pi}=\frac{2 \sigma}{r} \quad p_{\sigma \pi}=\frac{2 \sigma}{R} \cdot \sqrt[3]{n}$	0.2p	1.0p
	The electrostatic potential of each small drop $\frac{R}{n} \cdot \phi_{\text {max }}=r \cdot \phi_{\pi}$ $\phi_{\pi}=\frac{1}{\sqrt[3]{n^{2}}} \cdot 2 \cdot \sqrt{\frac{\sigma \cdot R}{\varepsilon_{0}}} \quad \phi_{\pi}=2 \cdot \sigma^{1 / 2} \cdot \varepsilon_{0}^{-1 / 2} \cdot R^{1 / 2} \cdot n^{-2 / 3}$	0.2p	
	The outward pressure determined by the electric charges on each small drop $p_{s \pi}=\frac{\varepsilon_{0} \cdot \phi_{\pi}^{2}}{2 r^{2}} \quad p_{s \pi}=\frac{2 \sigma}{R} \cdot n^{-2 / 3}$	0.2p	
	Expression of the pressure leading to the spherical shape of the droplets resulting from the spray $p_{\pi}=\frac{2 \sigma}{R} \cdot\left(n^{1 / 3}-n^{-2 / 3}\right)$	0.2p	
	$p_{\pi}=5.1 \times 10^{2} N \cdot \mathrm{~m}^{-2}$	0.2p	
D.	$\mathscr{P a r t} \mathcal{D}$. Water in magnetic field		Points
D.1.	$\Delta W=w_{w}-w_{0}=\frac{B^{2}}{2 \mu_{0}} \cdot\left(\frac{1}{\mu_{r}}-1\right)$	0.3p	0.3p
D.2.	$\Delta W=v \cdot \frac{B^{2}}{2 \mu_{0}} \cdot\left(\frac{1}{\mu_{r}}-1\right)$	0.4p	1.5p
	$L=v \cdot\left(p_{N}-p_{M}\right)$	0.4p	
	$v \cdot\left(p_{N}-p_{M}\right)=v \cdot \frac{B^{2}}{2 \mu_{0}} \cdot\left(\frac{1}{\mu_{r}}-1\right)$	0.5p	
	$p_{N}-p_{M}=\frac{B^{2}}{2 \mu_{0}} \cdot\left(\frac{1}{\mu_{r}}-1\right)$	0.2p	
D.3.	$p_{N}=p_{0}+\rho \cdot g \cdot \frac{\mathbb{L}}{4} \cong p_{0}$	0.3p	1.5p
	$p_{M}=p_{0}-\frac{B^{2}}{2 \mu_{0}} \cdot\left(\frac{1}{\mu_{r}}-1\right)$	0.4p	
	$p_{M}=p_{s} \quad p_{s}=p_{s}\left(70^{\circ} \mathrm{C}\right)$	0.3p	
	$I=\sqrt{-\frac{2 \mu_{0} \cdot(1+\chi) \cdot\left(p_{0}-p_{s}\right)}{K^{2} \cdot \chi}}$	0.3p	
	$I=2.7 \times 10^{3} \mathrm{~A}$	0.2p	

E.	Part E. Rising 6u66les		Points
E.1.	$L_{\text {bubble }}=\pi \cdot R_{\text {bubbe }}^{2} \cdot h_{0} \cdot \rho \cdot \frac{V_{\text {buble }}^{2}}{2}$	0.4p	0.4p
E.2.	$F_{\text {asc }}=\frac{4 \pi}{3} \cdot R_{\text {bubble }}^{3} \cdot g \cdot \rho \quad$ Note: the weight of the vapor is negligible $F_{\text {dis }}=\pi \cdot R_{\text {bubble }}^{2} \cdot \rho \cdot \frac{v_{\text {bubble }}^{2}}{2}$ $\vec{F}_{\text {asc }}+\vec{F}_{\text {dis }}=0 \quad v_{\text {bubble }}=\sqrt{\frac{8 g \cdot R_{\text {bubble }}}{3}}$ $t_{u p}=\frac{h_{0}}{\sqrt{\frac{8 g \cdot R_{\text {bubble }}}{3}}}$ $t_{u p}=6.2 \times 10^{-1} \mathrm{~s}$	$0.2 p$ $0.2 p$ $0.2 p$ $0.2 p$	0.8p
Total points			10p

© Marking scheme proposed by:
Delia DAVIDESCU, PhD
Adrian DAFINEI, PhD

