

Marking scheme

Any other solution that leads to correct results will be scored accordingly.

Theoretical Problem nr. 3 - Water world

Я.	Part A. Falling droplets		Points
A.1.	$p_{up} + p_{hidro} = p_{down}$ $\sigma = \frac{\rho \cdot g \cdot h \cdot (h^2 - \delta^2)}{2\delta} \qquad \sigma \cong \frac{\rho \cdot g \cdot h^3}{2\delta}$	0.3p	0.5p
	$\sigma = 6.5 \times 10^{-2} \text{N} \cdot \text{m}^{-1}$	0.2p	
В.	Part B. Stalagmometer		Points
B.1 .	$G = F_{\sigma} \qquad \qquad R = \sqrt[3]{\frac{3 \cdot d \cdot \sigma}{4 \cdot g \cdot \rho}}$	0.3p	0.5p
	$R = 7.9 \times 10^{-4} m$	0.2p	
B.2.	$G + F_{H} = F_{\sigma} \qquad \begin{cases} R_{H} = \sqrt[3]{\frac{3}{4} \left(\frac{d \cdot \sigma}{\rho \cdot g} - \frac{d^{2} \cdot H}{4} \right)} \\ R_{H} = R \cdot \sqrt[3]{1 - \frac{d \cdot H \cdot \rho \cdot g}{4\sigma}} \end{cases}$	0.3p	0.5p
	$R_{\rm H} = 7.4 \times 10^{-4} m$	0.2p	
С.	Part C. Electrically charged droplets		Points
C.1	The variation of the volume of the conductive drop, if its radius increases with the infinitely small amount ΔR $\Delta V = \frac{4\pi}{3} \cdot \left[\left(R + \Delta R \right)^3 - R^3 \right] \cong 4\pi \cdot R^2 \cdot \Delta R$	0.3p	2.0p
	Variation of the capacitance of the spherical capacitor represented by the drop $\Delta C = 4\pi \cdot \varepsilon_0 \cdot \Delta R$	0.3p	
	The variation of the electrostatic energy, accumulated in the drop at the constant potential $\Delta W_{\varepsilon} = 2\pi \cdot \varepsilon_0 \cdot \phi^2 \cdot \Delta R$	0.4p	
	Mechanical work L_{ε} of electrostatic pressure p_{ε} , when increasing the volume with ΔV $\begin{cases} L_{\varepsilon} = p_{\varepsilon} \cdot \Delta V \\ L_{\varepsilon} = p_{\varepsilon} \cdot 4\pi \cdot R^2 \cdot \Delta R \end{cases}$	0.4p	
	$\Delta W_{\varepsilon} = L_{\varepsilon}$	0.3p	
	$p_{\varepsilon} = \frac{\varepsilon_0 \cdot \phi^2}{2R^2}$	0.3p	

C.2.	The expression of the pressure exerted towards the outside of the drop, just before the	0.2p	1.0p
	$p = \frac{\varepsilon_0 \cdot \phi_{max}^2}{1 + 1 + 1 + 1 + 1}$		
	<u>Γε 2R²</u> 2σ	0.2n	
	The expression of the pressure exerted towards the inside of the drop $p_{\sigma} = \frac{20}{R}$	0.20	
	$\mathcal{P}_{\sigma} = \mathcal{P}_{\varepsilon}$	0.2p	
	$\sigma \cdot R$	0.2p	
	$\varphi_{\max} = 2 \cdot \sqrt{\frac{\varepsilon_0}{\varepsilon_0}}$		
	$\phi_{max} = 5.4 \times 10^3 V$	0.2p	
C.3.	The pressure due to the surface tension in each of the n small drops	0.2p	1.0p
	$p_{\sigma\pi} = \frac{2\sigma}{r}$ $p_{\sigma\pi} = \frac{2\sigma}{R} \cdot \sqrt[3]{n}$		
	The electrostatic potential of each small drop $\frac{R}{n} \cdot \phi_{max} = r \cdot \phi_{\pi}$	0.2p	
	$\phi_{\pi} = \frac{1}{\sqrt[3]{n^2}} \cdot 2 \cdot \sqrt{\frac{\sigma \cdot R}{\varepsilon_0}} \qquad \qquad \phi_{\pi} = 2 \cdot \sigma^{1/2} \cdot \varepsilon_0^{-1/2} \cdot R^{1/2} \cdot n^{-2/3}$		
	The outward pressure determined by the electric charges on each small drop	0.2p	
	$\boldsymbol{p}_{\varepsilon\pi} = \frac{\varepsilon_0 \cdot \phi_{\pi}^2}{2r^2} \qquad \boldsymbol{p}_{\varepsilon\pi} = \frac{2\sigma}{R} \cdot n^{-2/3}$		
	Expression of the pressure leading to the spherical shape of the droplets resulting from the	0.2p	
	spray $p_{\pi} = \frac{2\sigma}{R} \cdot \left(n^{1/3} - n^{-2/3} \right)$		
	$p_{\pi} = 5.1 \times 10^2 N \cdot m^{-2}$	0.2p	
Ф.	Part D. Water in magnetic field		Points
D.1.	$\Delta W = W_w - W_0 = \frac{B^2}{2\mu_0} \cdot \left(\frac{1}{\mu_r} - 1\right)$	0.3p	0.3p
D.2.	$\Delta W = v \cdot \frac{B^2}{2\mu_0} \cdot \left(\frac{1}{\mu_r} - 1\right)$	0.4p	1.5p
	$I = Y_{1}(p_{1} = p_{1})$	0.4p	
	$\mathbf{L} = \mathbf{V} \cdot (\mathbf{p}_{N} - \mathbf{p}_{M})$	0.5.	
	$\mathbf{v} \cdot \left(\mathbf{p}_{N} - \mathbf{p}_{M} \right) = \mathbf{v} \cdot \frac{\mathbf{B}^{2}}{2\mu_{0}} \cdot \left(\frac{1}{\mu_{r}} - 1 \right)$	0.5p	
	$\boldsymbol{p}_N - \boldsymbol{p}_M = \frac{B^2}{2\mu_0} \cdot \left(\frac{1}{\mu_r} - 1\right)$	0.2p	
D.3.	$p_N = p_0 + \rho \cdot g \cdot \frac{\mathbb{L}}{4} \cong p_0$	0.3p	1.5p
	$p_{M} = p_{0} - \frac{B^{2}}{2\mu_{0}} \cdot \left(\frac{1}{\mu_{r}} - 1\right)$	0.4p	
	$p_{\rm M} = p_{\rm s}$ $p_{\rm s} = p_{\rm s}(70^{\circ}C)$	0.3p	
	$2u \cdot (1+x) \cdot (p - p)$	0.3p	
	$I = \sqrt{-\frac{2\mu_0 \left(1 + \chi\right) \left(\mu_0 - \mu_s\right)}{\kappa^2 \cdot \chi}}$		
	$I = 2.7 \times 10^3 A$	0.2p	

E.	Part E. Rising bubbles		Points
E.1.	$L_{bubble} = \pi \cdot R_{bubble}^2 \cdot h_0 \cdot \rho \cdot \frac{V_{bubble}^2}{2}$	0.4p	0.4p
E.2.	$\begin{aligned} F_{asc} &= \frac{4\pi}{3} \cdot R^3_{_{bubble}} \cdot g \cdot \rho & \text{Note: the weight of the vapor is negligible} \\ F_{dis} &= \pi \cdot R^2_{_{bubble}} \cdot \rho \cdot \frac{v^2_{_{bubble}}}{2} \end{aligned}$	0.2p	0.8p
	$\vec{F}_{asc} + \vec{F}_{dis} = 0$ $v_{bubble} = \sqrt{\frac{8g \cdot R_{bubble}}{3}}$	0.2p	
	$t_{up} = \frac{h_0}{\sqrt{\frac{8g \cdot R_{bubble}}{3}}}$	0.2p	
	$t_{up} = 6.2 \times 10^{-1} \mathrm{s}$	0.2p	
Total points			10p

© Marking scheme proposed by: Delia DAVIDESCU, PhD Adrian DAFINEI, PhD