

Marking scheme Points are given for any correct solution

Problem III Rinas and strins

Rings and strips					
Nr. item	Task no. 1 – Rotating ring		Points		
1.a.	For:		2.60p		
	$\vec{B}_{Earth} = B_h \cdot \hat{e}_x + B_v \cdot \hat{e}_z$				
	B_h - horizontal component of Earth's magnetic field	0.20p			
	B_{v} - vertical component of Earth's magnetic field				
	formula of surface vector \vec{S} for the ring	0.20p			
	$\vec{S} = \pi \cdot R^2 \cdot \left(\cos(\omega \cdot t) \cdot \hat{e}_x + \sin(\omega \cdot t) \cdot \hat{e}_y \right)$	0.200			
	expression of magnetic flux ϕ of Earth's magnetic field through ring's surface				
	$\left[\phi = \vec{B}_{Earth} \bullet \vec{S} = \left(B_h \cdot \hat{e}_x + B_v \cdot \hat{e}_z\right) \bullet \left(\pi \cdot R^2 \cdot \left(\cos(\omega \cdot t) \cdot \hat{e}_x + \sin(\omega \cdot t) \cdot \hat{e}_y\right)\right)\right]$	0.40p			
	$\begin{cases} \phi = \vec{B}_{Earth} \bullet \vec{S} = (B_h \cdot \hat{e}_x + B_v \cdot \hat{e}_z) \bullet (\pi \cdot R^2 \cdot (\cos(\omega \cdot t) \cdot \hat{e}_x + \sin(\omega \cdot t) \cdot \hat{e}_y)) \\ \phi = B_h \cdot \pi \cdot R^2 \cdot \cos(\omega \cdot t) \end{cases}$	-			
	expression of electromotive force induced in the ring				
	$\int E = -\frac{d\phi}{d\phi}$	0.20p			
	$\begin{cases} E = -\frac{d\phi}{dt} \\ E(t) = B_h \cdot \pi \cdot R^2 \cdot \omega \cdot \sin(\omega \cdot t) \end{cases}$	0.200			
	$[E(t) = B_h \cdot \pi \cdot R^2 \cdot \omega \cdot \sin(\omega \cdot t)]$				
	intensity of electrical current through the ring $i(t) = \frac{B_h \cdot s \cdot R \cdot \omega}{2 \cdot \rho} \cdot \sin(\omega \cdot t)$	0.20p			
	modulus of induced magnetic field in center of ring				
	$B_{i}(t) = \frac{\mu_{0} \cdot B_{h} \cdot s \cdot R \cdot \omega}{4R \cdot \rho} \cdot \sin(\omega \cdot t)$	0.20p			
	$\vec{B}_{i} = B_{i} \cdot \left(\hat{e}_{x} \cdot cos(\omega \cdot t) + \hat{e}_{y} \cdot sin(\omega \cdot t) \right)$				
	$\vec{B}_{i} = \frac{\mu_{0} \cdot B_{h} \cdot s \cdot \omega}{4 \cdot \rho} \cdot \left[\hat{e}_{x} \cdot \frac{1}{2} \cdot \sin(2\omega \cdot t) + \hat{e}_{y} \cdot \frac{1}{2} \cdot (1 - \cos(2\omega \cdot t)) \right]$	0.60p			
	average value per time of induced magnetic field $\left\langle \vec{B}_{i} \right\rangle = \frac{\mu_{0} \cdot B_{h} \cdot s \cdot R \cdot \omega}{8R \cdot \rho} \cdot \hat{e}_{y}$	0.20p			
	$tg\alpha = \frac{\left \left\langle \vec{B}_{i} \right\rangle\right }{B_{h}}$	0.20p			
	$\alpha = \operatorname{arctg} \frac{\mu_0 \cdot \mathbf{s} \cdot \boldsymbol{\omega}}{8 \cdot \boldsymbol{\rho}}$	0.20p			

Romanian Master of Physics 2017

Nr. item	Task no. 2 – The superconducting ring		Poins
2.a.	For:		4.00p
	expression of magnetic flux through ring's surface $\Phi = B_z \cdot \pi \cdot r_0^2 + L \cdot I$	0.40p	
	$0 = R \cdot I = \frac{d\Phi}{dt}$ - voltage drop on superconducting ring is zero - magnetic flux inside the ring is constant	0.20p	
	$\Phi = B_0 \cdot (1 - \alpha \cdot z) \cdot \pi \cdot r_0^2 + L \cdot I = constant$ Initial conditions $\begin{cases} z(t = 0) = 0 \\ l(t = 0) = 0 \end{cases}$ constant = $B_0 \cdot \pi \cdot r_0^2$	0.40p	
	expression of the intensity of electric current through the ring $I = \frac{B_0}{L} \cdot \alpha \cdot \pi \cdot r_0^2 \cdot z$	0.40p	
	radial component of the force of interaction is zero - because of symmetry vertical component of the force of interaction $F_z = -\frac{2\pi^2 \cdot \alpha \cdot \beta \cdot B_0^2 \cdot r_0^4}{L} \cdot z$	0.60p	
	elastic constant $k = \frac{2\pi^2 \cdot \alpha \cdot \beta \cdot B_0^2 \cdot r_0^4}{L}$	0.20p	
	equations of motion for the ring $m \cdot \frac{d^2 z}{dt^2} + k \cdot z = -m \cdot g$	0.60p	
	general solution of the equations of motion for the ring $z(t) = A \cdot \cos(\omega \cdot t + \psi) - \frac{m \cdot g}{k}$	0.40p	
	initial conditions $\begin{cases} z(0) = 0 \\ \dot{z}(0) = v_z(0) = 0 \end{cases}$	0.20p	
	$\begin{cases} z(t) = \frac{m \cdot g \cdot L}{2\pi^2 \cdot \alpha \cdot \beta \cdot B_0^2 \cdot r_0^4} \cdot \cos\left[\sqrt{\frac{2\pi^2 \cdot \alpha \cdot \beta \cdot B_0^2 \cdot r_0^4}{L \cdot m}} \cdot t - 1\right] \\ z(t) = \frac{m \cdot g \cdot L}{2\pi^2 \cdot \alpha \cdot \beta \cdot B_0^2 \cdot r_0^4} \cdot \cos\left[\pi \cdot B_0 \cdot r_0^2 \cdot \sqrt{\frac{2 \cdot \alpha \cdot \beta}{L \cdot m}} \cdot t - 1\right] \end{cases}$ Observations: 1. Vertical coordinate is $z \le 0$. 2. Electric current passes all the time in the same direction through the ring and has a minimum value $(l = 0)$ in the upper point $(z = 0)$ of oscillation 3. The electromagnetic force is always upward with a minimum value $(F_m = 0)$ in the upper point of oscillation	0.60p	

Romanian Master of Physics 2017

Romanian Master of Physics 2017

3.c.	For:		0.50p
	$\int U = -\frac{d\varphi}{dt}$		
	$\begin{cases} U = -\frac{d\varphi}{dt} & \text{or} & \varphi = L \cdot I \\ U = -L \cdot \frac{dI}{dt} & \end{cases}$	0.30p	
	$U = -L \cdot \frac{dt}{dt}$		
	$L = \frac{\mu_0 \cdot D \cdot a}{b}$	0.20p	
3.d.	For:		0.50p
	the second II Kirchhoff law $V = L \cdot \frac{dI}{dt}$ (<i>R=0, C=0</i>)	0.30p	
	$I(t) = \frac{V \cdot b}{\mu_0 \cdot D \cdot a} \cdot t$	0.20p	
3.e.	For:		0.50p
	4		
	Voltage difference $U_{AA'}$ between two mirroring points of the two bands is due to		
	self-induced voltage corresponding to the portion starting at x to the end of the		
	assembly strip		
	$U_{AA'} = L(x) \cdot \frac{dI}{dt}$	0.30p	
	L(x) - the inductance linked with of the magnetic flux through ending portion (of		
	length x) of the strip assembly		
	$L(x) = \frac{\Phi(x)}{l}$		
	$\begin{cases} L(x) = \frac{\Phi(x)}{l} \\ L(x) = \frac{B \cdot x \cdot a}{l} \end{cases}$		
	$L(x) = \frac{\mu_0 \cdot x \cdot a}{b}$		
	$U_{AA'} = V \cdot \frac{x}{D}$	0.20p	
3.f.	For:		0.50p
	$\int \frac{dW}{dt} = I \cdot U_{AA'}$		
	$\int dt \qquad $	0.50p	
	$\begin{cases} \frac{dW}{dt} = \frac{V^2 \cdot b \cdot x}{\mu_0 \cdot D^2 \cdot a} \cdot t \end{cases}$		
TOT	Image: All the second secon		10p
101/			100

© Marking scheme written by:

Prof. dr. Delia DAVIDESCU Conf. univ. dr. Adrian DAFINEI