Marking scheme
 Points are given for any correct solution

Pro6lem III
Rings and strips

Nr. item	Taskno. 1 - Rotating ring		Points
1.a.	For: $\vec{B}_{\text {Earth }}=B_{h} \cdot \hat{e}_{x}+B_{v} \cdot \hat{e}_{z}$ B_{h} - horizontal component of Earth's magnetic field B_{v} - vertical component of Earth's magnetic field	0.20p	2.60p
	formula of surface vector \vec{S} for the ring $\vec{S}=\pi \cdot R^{2} \cdot\left(\cos (\omega \cdot t) \cdot \hat{e}_{x}+\sin (\omega \cdot t) \cdot \hat{e}_{y}\right)$	0.20p	
	expression of magnetic flux ϕ of Earth's magnetic field through ring's surface $\left\{\begin{array}{l} \phi=\vec{B}_{\text {Earth }} \cdot \vec{S}=\left(B_{h} \cdot \hat{e}_{x}+B_{v} \cdot \hat{e}_{z}\right) \cdot\left(\pi \cdot R^{2} \cdot\left(\cos (\omega \cdot t) \cdot \hat{e}_{x}+\sin (\omega \cdot t) \cdot \hat{e}_{y}\right)\right) \\ \phi=B_{h} \cdot \pi \cdot R^{2} \cdot \cos (\omega \cdot t) \end{array}\right.$	0.40p	
	expression of electromotive force induced in the ring $\left\{\begin{array}{l} E=-\frac{d \phi}{d t} \\ E(t)=B_{h} \cdot \pi \cdot R^{2} \cdot \omega \cdot \sin (\omega \cdot t) \end{array}\right.$	0.20p	
	intensity of electrical current through the ring $i(t)=\frac{B_{h} \cdot s \cdot R \cdot \omega}{2 \cdot \rho} \cdot \sin (\omega \cdot t)$	0.20p	
	modulus of induced magnetic field in center of ring $B_{i}(t)=\frac{\mu_{0} \cdot B_{h} \cdot s \cdot R \cdot \omega}{4 R \cdot \rho} \cdot \sin (\omega \cdot t)$	0.20p	
	$\begin{aligned} & \vec{B}_{i}=B_{i} \cdot\left(\hat{e}_{x} \cdot \cos (\omega \cdot t)+\hat{e}_{y} \cdot \sin (\omega \cdot t)\right) \\ & \vec{B}_{i}=\frac{\mu_{0} \cdot B_{h} \cdot s \cdot \omega}{4 \cdot \rho} \cdot\left[\hat{e}_{x} \cdot \frac{1}{2} \cdot \sin (2 \omega \cdot t)+\hat{e}_{y} \cdot \frac{1}{2} \cdot(1-\cos (2 \omega \cdot t))\right] \end{aligned}$	0.60p	
	average value per time of induced magnetic field $\left\langle\vec{B}_{i}\right\rangle=\frac{\mu_{0} \cdot B_{h} \cdot s \cdot R \cdot \omega}{8 R \cdot \rho} \cdot \hat{e}_{y}$	0.20p	
	$\operatorname{tg} \alpha=\frac{\left\|\left\langle\vec{B}_{i}\right\rangle\right\|}{B_{h}}$	0.20p	
	$\alpha=\operatorname{arctg} \frac{\mu_{0} \cdot \boldsymbol{s} \cdot \omega}{8 \cdot \rho}$	0.20p	

Nr. item	Task no. 2 - The superconducting ring		Poins
2.a.	For: expression of magnetic flux through ring's surface $\Phi=B_{z} \cdot \pi \cdot r_{0}^{2}+L \cdot I$	0.40p	4.00p
	$0=R \cdot I=\frac{d \Phi}{d t}$ - voltage drop on superconducting ring is zero - magnetic flux inside the ring is constant	0.20p	
	$\Phi=B_{0} \cdot(1-\alpha \cdot z) \cdot \pi \cdot r_{0}^{2}+L \cdot I=\text { constant }$ Initial conditions $\left\{\begin{array}{l}z(t=0)=0 \\ l(t=0)=0\end{array} \quad\right.$ constant $=B_{0} \cdot \pi \cdot r_{0}^{2}$	0.40p	
	expression of the intensity of electric current through the ring $I=\frac{B_{0}}{L} \cdot \alpha \cdot \pi \cdot r_{0}^{2} \cdot z$	0.40p	
	radial component of the force of interaction is zero - because of symmetry vertical component of the force of interaction $F_{z}=-\frac{2 \pi^{2} \cdot \alpha \cdot \beta \cdot B_{0}^{2} \cdot r_{0}^{4}}{L} \cdot z$	0.60p	
	elastic constant $k=\frac{2 \pi^{2} \cdot \alpha \cdot \beta \cdot B_{0}^{2} \cdot r_{0}^{4}}{L}$	0.20p	
	equations of motion for the ring $m \cdot \frac{d^{2} z}{d t^{2}}+k \cdot z=-m \cdot g$	0.60p	
	general solution of the equations of motion for the ring $z(t)=A \cdot \cos (\omega \cdot t+\psi)-\frac{m \cdot g}{k}$	0.40p	
	initial conditions $\left\{\begin{array}{l}z(0)=0 \\ \dot{z}(0)=v_{z}(0)=0\end{array}\right.$	0.20p	
	$\left\{\begin{array}{l} z(t)=\frac{m \cdot g \cdot L}{2 \pi^{2} \cdot \alpha \cdot \beta \cdot B_{0}^{2} \cdot r_{0}^{4}} \cdot \cos \left[\sqrt{\frac{2 \pi^{2} \cdot \alpha \cdot \beta \cdot B_{0}^{2} \cdot r_{0}^{4}}{L \cdot m}} \cdot t-1\right] \\ z(t)=\frac{m \cdot g \cdot L}{2 \pi^{2} \cdot \alpha \cdot \beta \cdot B_{0}^{2} \cdot r_{0}^{4}} \cdot \cos \left[\pi \cdot B_{0} \cdot r_{0}^{2} \cdot \sqrt{\frac{2 \cdot \alpha \cdot \beta}{L \cdot m}} \cdot t-1\right] \end{array}\right.$ Observations: 1. Vertical coordinate is $z \leq 0$. 2. Electric current passes all the time in the same direction through the ring and has a minimum value $(I=0)$ in the upper point $(z=0)$ of oscillation 3. The electromagnetic force is always upward with a minimum value $\left(F_{m}=0\right)$ in the upper point of oscillation	0.60p	

2.b.	For: expression of time dependence of electric current $\left\{\begin{array}{l} I(t)=\frac{g \cdot m}{2 \pi \cdot \beta \cdot B_{0} \cdot r_{0}^{2}} \cdot\left(\cos \sqrt{\frac{2 \pi^{2} \cdot \alpha \cdot \beta \cdot B_{0}^{2} \cdot r_{0}^{4}}{L \cdot m}} \cdot t-1\right) \\ I(t)=\frac{g \cdot m}{2 \pi \cdot \beta \cdot B_{0} \cdot r_{0}^{2}} \cdot\left(\cos \left[\pi \cdot B_{0} \cdot r_{0}^{2} \cdot \sqrt{\frac{2 \cdot \alpha \cdot \beta}{L \cdot m}} \cdot t-1\right]\right) \end{array}\right.$	0.40p	0.40p
Nr. item	Taskno. 3 - Conducting strips		Points
3.a.	For:	0.30p	0.50p
	$B_{1}=B_{2}=\mu_{0} \cdot \frac{l}{2 b}$	0.20p	
3.b.	For: $\left\{\begin{array}{l} B=B_{1}+B_{2} \\ B=\mu_{0} \cdot \frac{l}{b} \end{array}\right.$	0.50p	0.50p

3.c.	For: $\left\{\begin{array}{l} U=-\frac{d \varphi}{d t} \\ U=-L \cdot \frac{d I}{d t} \end{array} \quad \text { or } \quad \varphi=L \cdot l\right.$	0.30p	0.50p
	$L=\frac{\mu_{0} \cdot D \cdot a}{b}$	0.20p	
3.d.	For: the second II Kirchhoff law $V=L \cdot \frac{d l}{d t} \quad(R=0, C=0)$	0.30p	0.50p
	$I(t)=\frac{V \cdot b}{\mu_{0} \cdot D \cdot a} \cdot t$	0.20p	
3.e.	For: Voltage difference $U_{A A^{\prime}}$ between two mirroring points of the two bands is due to self-induced voltage corresponding to the portion starting at x to the end of the assembly strip $U_{A A^{\prime}}=L(x) \cdot \frac{d l}{d t}$ $L(x)$ - the inductance linked with of the magnetic flux through ending portion (of length x) of the strip assembly $\begin{aligned} & \left\{\begin{array}{l} L(x)=\frac{\Phi(x)}{l} \\ L(x)=\frac{B \cdot x \cdot a}{l} \end{array}\right. \\ & L(x)=\frac{\mu_{0} \cdot x \cdot a}{b} \end{aligned}$	0.30p	0.50p
	$U_{A A^{\prime}}=V \cdot \frac{x}{D}$	0.20p	
3.f.	For: $\left\{\begin{array}{l} \frac{d W}{d t}=I \cdot U_{A A^{\prime}} \\ \frac{d W}{d t}=\frac{V^{2} \cdot b \cdot x}{\mu_{0} \cdot D^{2} \cdot a} \cdot t \end{array}\right.$	0.50p	0.50p
TOTAL Problem III			10p

© Marking scheme written by:
Prof. dr. Delia DAVIDESCU
Conf. univ. dr. Adrian DAFINEI

