

Theoretical Exam - October 27, 2017

Marking scheme Any other solution that leads to correct results will be duly marked

No. item	Theoretical Problem No. 2 – Part A Sir Geoffrey I. Taylor		Points
a.	For:		0.5p
	$R \sim t^{\alpha} \cdot E^{\beta} \cdot \rho^{\gamma}$	0.1p	
	$L = T^{\alpha} \cdot \left(M \cdot L^2 \cdot T^{-2} \right)^{\beta} \cdot \left(M \cdot L^{-3} \right)^{\gamma}$	0.1p	
	$\begin{cases} \alpha - 2\beta = 0\\ 2\beta - 3\gamma = 1\\ \beta + \gamma = 0 \end{cases}$	0.1p	
	$\alpha = \frac{2}{5} \qquad \beta = \frac{1}{5} \qquad \gamma = -\frac{1}{5}$	0.1p	
	$R \sim t^{\frac{2}{5}} \cdot \left(\frac{E}{\rho}\right)^{\frac{1}{5}}$	0.1p	
b.	For:		1.5p
	$C \cong 1$ $R = t^{\frac{2}{5}} \cdot \left(\frac{E}{\rho}\right)^{\frac{1}{5}}$	0.1p	
	$\log R = \frac{2}{5} \cdot \log t + \frac{1}{5} \cdot \log \frac{E}{\rho}$	0.3p	
	$y = A \cdot x + B, \text{ where } \begin{cases} y = \log R \\ x = \log t \\ A = \frac{2}{5} \\ B = \frac{1}{5} \log \frac{E}{\rho} \end{cases}$	0.2p	

© Marking scheme proposed by: Prof. Dr. Delia DAVIDESCU Conf. Univ. Dr. Adrian DAFINEI