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Q1. Compressible fluids 

The study of gases flow uncovers many interesting phenomena which have a myriad of applications, 

starting from boilers to airplanes and rockets. To simplify the calculations, in this problem the following 

assumptions will be adopted: 

- The gas is ideal; 

- The gas flow is steady and non-turbulent; 

- The processes taking place in the flowing gas are adiabatic; 

- The gas flow speed is much less than the speed of light; 

- The gas flow is uniform and one-dimensional (axisymmetric); 

- The effect of gravity is negligible. 

The constants useful in this problem are: 

- the molar mass of air,             ; 

- the ideal gas constant,        
 

     
. 

A. Bernoulli’s equation 

Bernoulli’s equation is the mathematical form of the law of conservation and transformation of energy for 

a flowing ideal gas. It bears the name of the Swiss physicist Daniel Bernoulli (1700 - 1782), who derived 

it in 1738. The easiest way to obtain this equation is to follow a fluid particle (a volume element of the 

fluid) in its way on a streamline. 

A 
Perform the energy balance between two points in the flowing gas, knowing the 

parameters            and           , and derive the equation that connects 

these variables. The adiabatic exponent   of the gas is also known. The 

parameter   is the gas pressure,   its density, and   its speed. 

1.5 p 

B. Propagation of a perturbation in a flowing gas 

If the pressure in a layer of a macroscopically motionless gas system suddenly increases (by heating or 

rapid compression), the layer will begin to expand, compressing the adjacent layers. This pressure 

disturbance will be thus transmitted by contiguity as an elastic wave through the gas. 

B1. Speed of the perturbation 

The speed c of this wave is the speed of its wavefront (the most advanced surface, the points of which 

oscillate in phase and the thermodynamic parameters of which have the same value). If in the reference 

frame of the unperturbed gas the process of the wave propagation is nonsteady (the gas parameters in any 

point vary with time), in the reference frame of the wavefront the process will be steady, so the simple 

equations for a steady state can be applied. 

B1 
Derive the mathematical expression for the speed   of the wavefront, taking into 

account that the thermodynamic parameters of the unperturbed gas are        

while those “behind” the wavefront are                      

1.5 p 
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B.2 Sound waves 

Sound waves are waves of weak disturbances (     and     ) that travel fast enough, their speed 

being of the order of hundreds of meters per second. Due to this, the gas compressions and rarefactions 

can be considered as adiabatic, the adiabatic exponent being  . 

B2 
Using the result from B1, obtain the mathematical expression for the sound speed 

in the gas and, using Bernoulli’s eq., derive the relation between the flow speed 

at a given point in the gas and the local sound speed. 

0.5 p 

B.3 Mach’s number 

For classifying the speed performances of bodies in a fluid (e.g. aircrafts), as well as the flow regimes of 

fluids, the Swiss aeronautical engineer Jakob Ackeret (1898 – 1981) – one of the leading authorities in the 

20
th

 century aeronautics – proposed in 1929 that the ratio of the body or of the fluid’s speed v and the 

local sound speed c in that fluid to be called Mach’s number 

  
 

 
  

after the name of the great Czech (then in the Austrian empire) physicist and philosopher Ernst Mach 

(1838 – 1916). Primarily, the value of this non-dimensional quantity delimitates the incompressible from 

the compressible behavior of a flowing fluid, in aeronautics this limit being settled to      . 

B3.1 
Find the relative variation of the gas density as a function of Mach’s number, 

when its motion is slowed down to a stop, its initial velocity being cv  , and 

calculate its maximum value for a flow to be considered incompressible. 

0.5 p 

 

B3.2 
The pressure at the nose of an aircraft in flight was found to be             

and the speed of air relative to the aircraft was zero at this point. The pressure 

and temperature of the undisturbed air were             and        

respectively. The adiabatic exponent for this temperature is       . Find the 

speed and the Mach number of the aircraft. 

0.5 p 

 

B3.3 
When a gas is flowing through a pipe, it exerts a friction force on the fluid, 

which is not always negligible. If at the entrance of such a pipe the static 

pressure in the flowing fluid is                and the Mach number is 

        , while at the exit        , find the expression and the numerical 

value of the force with which the fluid is acting on the pipe. The adiabatic 

exponent is       , the constant cross section of the pipe is        

       , and the relative increase of the gas temperature through the pipe is 

         . 

1.0 p 
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C. Shock waves 

There are two types of acoustic waves in a gas: sound waves and shock waves. The latter appear when a 

body moves in a gas with a supersonic speed (i.e. the relative speed of the body with respect to that of the 

gas is greater than the sound speed). At supersonic speeds, in front of the body appears a very thin layer 

of gas with a higher pressure, called compression shock. This kind of special acoustic waves were studied 

by Mach, so the envelope of such a wave is known as Mach’s cone, having the body in its apex. Passing 

through the compression shock, the thermodynamic parameters of the gas change abruptly. The Mach’s 

cone is an example of an oblique shock, but we are interested here mainly in normal shocks, for which the 

shock wavefront is perpendicular on the body or fluid velocity. 

For shock waves the pressure/density differences between the two sides of the wavefront can reach very 

high values. Passing through the wavefront, the thermodynamic parameters vary abruptly, with a sudden 

jump. This is another reason for which a shock wavefront is called a pressure or a compression shock. 

C.1 The shock adiabat 

The gas compressed by the shock wave undergoes an irreversible adiabatic process which cannot be 

described by Poisson’s equation. However, an equation for the shock adiabat was deduced towards the 

end of the XIX
th

 century by the Scottish physicist William Rankine (1820 – 1872) and, independently by 

him, by the French engineer Pierre Henri Hugoniot (1851 – 1887), using the mass and energy 

conservation, as well as the momentum equation. The Rankine – Hugoniot equation, or the shock adiabat, 

relates the pressure and the density of the gas compressed by a shock wave. 

C1 
Denoting with    and    the gas pressure and density in front of the 

compression shock (which are known), and with    and    the same parameters 

behind the shock (which are unknown), show that the pressure ratio 
  

  
    is 

related with the density ratio 
  

  
    by a relation of the form 

   
     

     
   

Find the explicit form of the coefficients  ,  ,   and  . 

The adiabatic exponent   of the gas is known. 

Note: For simplicity, use a stream tube with a constant cross section, crossing 

perpendicularly the wavefront of the normal shock. 

1.5 p 
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C.2 A shockwave created by an explosion 

An explosion creates a spherically shockwave propagating radially into still air at                and 

         . A recording instrument registers a maximum pressure of                as the shock 

wavefront passes by. The adiabatic coefficient of air for this compression shock is       , the molar 

mass of air is       
 

   
 and the ideal gas constant is       

 

     
. 

C2.1 
Determine the air temperature increase 

  

  
 under the action of the compression 

shock. 
0.5 p 

 

C2.2 
Determine the Mach’s number corresponding to the speed of the shockwave. 0.5 p 

 

C2.3 
Determine the wind’s speed    following the shock wavefront, with respect to a 

fixed observer. 
0.5 p 

During the compression shock the gas temperature and pressure sharply increase, much more than in a 

quasistatic adiabatic compression. After the shock, the gas expands adiabatically, but because the slope of 

the adiabatic process is smaller than that of the adiabatic shock, when the gas density reaches again the 

initial value, its pressure    is still higher than that of the unperturbed gas,   . 

C2.4 
Derive the ratios 

  

  
 and 

  

  
 at the end of the expansion process and calculate the 

numerical values of    and   . 
0.5 p 

 

C2.5 
From this point the gas is cooling until it reaches the initial state. Assuming that 

for the entire cyclic process the adiabatic exponent has the same value, derive 

an expression for the entropy variation of the mass unit of air during the 

compression shock and calculate its numerical value. 

1.0 p 
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Q1. Compressible fluids 

Answer sheet 

 

The equation that relates            and            is 
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The relation between the flow speed at a given point in the gas and the local sound 

speed is: 
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B3.1 

 

 

  

 
     

 

 

 
  

 
 
   

  

 

 

 

B3.2 

 

 

   

 

 

   

 

 

 

B3.3 

The expression of the force is: The numerical value of the force is: 
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C2.2 

 

 

   

 

 

 

C2.3 

 

 

    

 

 

 

C2.4 

Analytical expressions Numerical values 

 

 

 

 
  

  
  

 

 

 

 

  

  
  

 

 

 

 

 

 

    

 

 

 

 

 

    

 

 

 

C2.5 

Analytical expression Numerical value 

 

 

       

  
  

 

 

 

 

       

  
  

 

 

 

 

 

 

 

 

 


