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PROBLEM No. 2 
 

 

a. 1p  

Consider an element dx of the rod, placed at distance x from the center of the rod. Its 

mass is dm = mdx/L each. Let 2l be the length of the rod at some moment, and let y be 

the corresponding length of the region x. 

Since the object is homogenous at all times, 
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Let v be the velocity of the two ends of the rod at some moment. 
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The velocity of the element considered is 
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The kinetic energy of the rod is 
22 22 2 3 2 2

2 2

kin

0 0 0

( )
2

2 3 24

LL L
dmv x mdx m x mL

E x
L L

ε ε
ε= = = =∫ ∫

ɺ ɺ
ɺ  

 

b. 0.5p  

Let S be the cross section of the rod, and V its volume. The elementary work done by 

the tensile force σS equals the increase in elastic potential energy. 
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c. 0.5p  
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Dividing by L we get: 
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d. 0.5p  

Dividing also by m we get: 
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e. 0.5p  

Consider very thin spherical layers of radius x and thickness dx. Their masses are: 
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Let r be the radius of the sphere and v the velocity of its surface at some moment. The 

argument goes similarly as in section A. 
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f. 0.5p  
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g. 0.5p  

( )

( )
2

2

1

1

x y
yx

xx

y x y x
y

y

E

E E

E

E E

ε µεσσ σε µ µ
σ σ ε µεε µ σ

µ

 + == − − 
⇒ 

+ = − =  −

 

 

h. 0.5p  
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i. 1.5p  

By replacing the sought solutions into the system of equations we get 

( )
( )
( )
( )

2 2

2

2 2

2

0
12 1

0
12 1

E A BAL

E B ABl

µω
ρ µ

µω
ρ µ

+
− + =

−


+− + = −

 

By dividing the two equations term by term we get a simpler one: 
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Let us denote the ratio of the two amplitudes by r. 
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Returning r in the second equation we get: 
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j. 0.5p  
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k. 1.5p  

Let d be the thickness of the plate. The shear 

force τld can be decomposed into a stretching 

component along L (x-axis) and a shrinking 

component along l (y-axis). 
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Multiplying the second equation by µ and subtracting it from the first one we get: 
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l. 0.5p  

The quantities involved in the shear deformation are absolutely analogous to those 

describing the longitudinal deformation. 
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m. 0.5p  

Consider very thin cylindrical layers of radius x and thickness dx. When the cylinder 

is twisting, each one of them is subject to a very small shear. 
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n. 1p  

Let α be a very small angle with witch one cap of the cylinder rotates with respect to 

the other. Then the slanting angle of a cylindrical layer is: 
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The corresponding shear stress is 
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The elementary shear force acting on the cap is 
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The corresponding elementary torque is 
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