PROBLEM No. 2
a. 1 p

Consider an element $\mathrm{d} x$ of the rod, placed at distance x from the center of the rod. Its mass is $\mathrm{d} m=m \mathrm{~d} x / L$ each. Let $2 l$ be the length of the rod at some moment, and let y be the corresponding length of the region x.
Since the object is homogenous at all times,
$\frac{y}{x}=\frac{l}{L / 2}$
Let v be the velocity of the two ends of the rod at some moment.
$v=\frac{\mathrm{d} l}{\mathrm{~d} t}=\frac{\mathrm{d}(2 l-L)}{2 \mathrm{~d} t}=\frac{\mathrm{d}\left(\frac{2 l-L}{L}\right)}{\frac{2 \mathrm{~d} t}{L}}=\frac{L \mathrm{~d} \varepsilon}{2 \mathrm{~d} t}=\frac{L}{2} \dot{\varepsilon}$
The velocity of the element considered is
$v(x)=\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d}\left(\frac{l x}{L / 2}\right)}{\mathrm{d} t}=\frac{x}{L / 2} \frac{d l}{d t}=\frac{x v}{L / 2}=\frac{2 x}{L} \frac{L \dot{\varepsilon}}{2}=x \dot{\varepsilon}$
The kinetic energy of the rod is
$E_{\text {kin }}=2 \int_{0}^{L / 2} \frac{d m v^{2}(x)}{2}=\int_{0}^{L / 2} x^{2} \dot{\varepsilon}^{2} \frac{m d x}{L}=\left.\frac{m \dot{\varepsilon}^{2}}{L} \frac{x^{3}}{3}\right|_{0} ^{L / 2}=\frac{m L^{2} \dot{\varepsilon}^{2}}{24}$
b. 0.5 p

Let S be the cross section of the rod, and V its volume. The elementary work done by the tensile force σS equals the increase in elastic potential energy.
$\mathrm{d} E_{\text {pot }}=\mathrm{d} W=F \mathrm{~d}(2 l)=\sigma S \mathrm{~d}(2 l-L)=E \varepsilon \frac{V}{L} \mathrm{~d}(2 l-L)=\frac{m E}{\rho} \varepsilon \mathrm{~d} \varepsilon=\mathrm{d}\left(\frac{m E}{2 \rho} \varepsilon^{2}\right) \Rightarrow$
$E_{\mathrm{pot}}=\frac{m E \varepsilon^{2}}{2 \rho}$
c. 0.5 p
$E_{\text {mech }}=E_{\text {kin }}+E_{\text {pot }}=\frac{m L^{2} \dot{\varepsilon}^{2}}{24}+\frac{m E \varepsilon^{2}}{2 \rho}=$ constant $\Rightarrow \dot{E}_{\text {mech }}=\frac{m L^{2} \dot{\varepsilon} \ddot{\varepsilon}}{12}+\frac{m E \varepsilon \dot{\varepsilon}}{\rho}=0 \Rightarrow$
$\frac{m L^{2} \ddot{\varepsilon}}{12}+V \sigma=0$
Dividing by L we get:
$m\left(\frac{L \varepsilon}{12}\right)^{\ddot{ }}=-\sigma S \Rightarrow \ddot{x}_{\text {equivalent }}=\left(\frac{L \varepsilon}{12}\right)$
d. 0.5 p

Dividing also by m we get:
$\frac{L^{2}}{12} \ddot{\varepsilon}+\frac{E}{\rho} \varepsilon=0 \Rightarrow \omega^{2}=\frac{12 E}{\rho L^{2}} \Rightarrow T_{\text {long }}=\pi L \sqrt{\frac{\rho}{3 E}}$
e. 0.5 p

Consider very thin spherical layers of radius x and thickness $\mathrm{d} x$. Their masses are:

$$
\mathrm{d} m=m \frac{4 \pi x^{2} \mathrm{~d} x}{\frac{4 \pi R^{3}}{3}}=\frac{3 m}{R^{3}} x^{2} \mathrm{~d} x
$$

Let r be the radius of the sphere and v the velocity of its surface at some moment. The argument goes similarly as in section A .
$v=R \dot{\varepsilon} \Rightarrow v(x)=x \dot{\varepsilon} \Rightarrow \mathrm{~d} E_{\text {kin }}=\frac{\mathrm{d} m v^{2}(x)}{2}=\frac{3 m x^{2} \mathrm{~d} x}{R^{3}} \frac{x^{2} \dot{\varepsilon}^{2}}{2} \Rightarrow E_{\mathrm{kin}}=\frac{3 m R^{2} \dot{\varepsilon}^{2}}{10}$
$\mathrm{d} E_{\mathrm{pot}}=\mathrm{d} W=\sigma S \mathrm{~d} r=\varepsilon E 4 \pi R^{2} R \mathrm{~d} \varepsilon=\frac{3 E V \mathrm{~d}\left(\varepsilon^{2}\right)}{2}=\mathrm{d}\left(\frac{3 m E}{2 \rho} \varepsilon^{2}\right)$
$E_{\text {mech }}=\frac{3 m}{2}\left(\frac{R^{2} \dot{\varepsilon}^{2}}{5}+\frac{E \varepsilon^{2}}{\rho}\right)=$ constant
f. 0.5 p

$$
\dot{E}=0 \Rightarrow \frac{R^{2} \ddot{\varepsilon} \ddot{\varepsilon}}{5}+\frac{E \varepsilon \dot{\varepsilon}}{\rho}=0 \Rightarrow \omega^{2}=\frac{5 E}{\rho R^{2}} \Rightarrow T_{\text {radial }}=2 \pi R \sqrt{\frac{\rho}{5 E}}
$$

g. 0.5 p

$$
\left\{\begin{array} { l }
{ \varepsilon _ { x } = \frac { \sigma _ { x } } { E } - \mu \frac { \sigma _ { y } } { E } } \\
{ \varepsilon _ { y } = \frac { \sigma _ { y } } { E } - \mu \frac { \sigma _ { x } } { E } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\sigma_{x}=\frac{E\left(\varepsilon_{x}+\mu \varepsilon_{y}\right)}{1-\mu^{2}} \\
\sigma_{y}=\frac{E\left(\varepsilon_{y}+\mu \varepsilon_{x}\right)}{1-\mu^{2}}
\end{array}\right.\right.
$$

h. 0.5 p

$$
\left\{\begin{array} { l }
{ m \ddot { x } _ { \text { equivalent } } = - \sigma _ { x } \frac { V } { L } } \\
{ m \ddot { y } _ { \text { equivalent } } = - \sigma _ { y } \frac { V } { l } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\frac{m L \ddot{\varepsilon}_{x}}{12}+\frac{E\left(\varepsilon_{x}+\mu \varepsilon_{y}\right)}{1-\mu^{2}} \frac{V}{L}=0 \\
\frac{m l \ddot{\varepsilon}_{y}}{12}+\frac{E\left(\varepsilon_{y}+\mu \varepsilon_{x}\right)}{1-\mu^{2}} \frac{V}{l}=0
\end{array}\right.\right.
$$

i. 1.5 p

By replacing the sought solutions into the system of equations we get
$\left\{\begin{array}{l}-\frac{\omega^{2} A L^{2}}{12}+\frac{E(A+\mu B)}{\rho\left(1-\mu^{2}\right)}=0 \\ -\frac{\omega^{2} B l^{2}}{12}+\frac{E(B+\mu A)}{\rho\left(1-\mu^{2}\right)}=0\end{array}\right.$
By dividing the two equations term by term we get a simpler one:

$$
\frac{A L^{2}}{B l^{2}}=\frac{A+\mu B}{B+\mu A}
$$

Let us denote the ratio of the two amplitudes by r.
$r \frac{L^{2}}{l^{2}}=\frac{r+\mu}{1+r \mu} \Rightarrow \mu L^{2} r^{2}+\left(L^{2}-l^{2}\right) r-\mu l^{2}=0 \Rightarrow$
$r_{1 ; 2}=\frac{-\left(L^{2}-l^{2}\right) \pm \sqrt{\left(L^{2}-l^{2}\right)^{2}+4 \mu^{2} L^{2} l^{2}}}{2 \mu L^{2}}$
Returning r in the second equation we get:

$$
\begin{aligned}
& \omega^{2}=\frac{12 E}{\rho l^{2}\left(1-\mu^{2}\right)}\left[1+\mu \frac{-\left(L^{2}-l^{2}\right) \pm \sqrt{\left(L^{2}-l^{2}\right)^{2}+4 \mu^{2} L^{2} l^{2}}}{2 \mu L^{2}}\right] \Rightarrow \\
& \omega_{1 ; 2}=\sqrt{\frac{6 E\left[L^{2}+l^{2} \pm \mu \sqrt{\left(L^{2}-l^{2}\right)^{2}+(2 \mu L l)^{2}}\right]}{\rho L^{2} l^{2}\left(1-\mu^{2}\right)}}
\end{aligned}
$$

j. 0.5 p
$L=l \Rightarrow \omega_{1 ; 2}=\sqrt{\frac{6 E\left(2 L^{2} \pm 2 \mu^{2} L^{2}\right)}{\rho L^{4}\left(1-\mu^{2}\right)}}=\sqrt{\frac{12 E\left(1 \pm \mu^{2}\right)}{\rho L^{2}\left(1-\mu^{2}\right)}}$
$\Delta \omega=\sqrt{\frac{12 E}{\rho L^{2}}}\left(\sqrt{\frac{1+\mu^{2}}{1-\mu^{2}}}-1\right) \approx \mu^{2} \sqrt{\frac{12 E}{\rho L^{2}}} \Rightarrow T_{\text {beats }}=\frac{T_{\text {long }}}{\mu^{2}}$
k. 1.5 p

Let d be the thickness of the plate. The shear force $\tau l d$ can be decomposed into a stretching component along L (x-axis) and a shrinking component along $l(y$-axis).
$\sigma_{x}=\frac{\tau l d \sin \gamma}{l d} ; \sigma_{y}=\frac{\tau l d \cos \gamma}{(L / \cos \gamma) d} \Rightarrow$
$\varepsilon_{x}=\frac{\tau \sin \gamma}{E}-\mu\left(-\frac{\tau l \cos ^{2} \gamma}{L E}\right)$
$\varepsilon_{y}=-\frac{\tau l \cos ^{2} \gamma}{L E}-\mu \frac{\tau \sin \gamma}{E}$

But

$$
\begin{aligned}
& \varepsilon_{x}=\frac{\frac{L}{\cos \gamma}-L}{L}=\frac{1-\cos \gamma}{\cos \gamma} ; \varepsilon_{y}=\frac{l \cos \gamma-l}{l}=-(1-\cos \gamma) \Rightarrow \\
& \left\{\begin{array}{l}
\frac{E}{\tau} \frac{1-\cos \gamma}{\cos \gamma}=\sin \gamma+\mu \frac{l}{L} \cos ^{2} \gamma \\
\frac{E}{\tau}(1-\cos \gamma)=\frac{l}{L} \cos ^{2} \gamma+\mu \sin \gamma
\end{array}\right.
\end{aligned}
$$

Multiplying the second equation by μ and subtracting it from the first one we get:

$$
\frac{E}{\tau}(1-\cos \gamma)\left(\frac{1}{\cos \gamma}-\mu\right)=\sin \gamma\left(1-\mu^{2}\right) \Rightarrow \frac{E \gamma^{2}}{2 \tau}(1-\mu) \approx \gamma\left(1-\mu^{2}\right) \Rightarrow \gamma=\frac{2 \tau(1+\mu)}{E}
$$

$G=\frac{E}{2(1+\mu)}$
l. 0.5 p

The quantities involved in the shear deformation are absolutely analogous to those describing the longitudinal deformation.
$T_{\text {slant }}=\pi L \sqrt{\frac{\rho}{3 G}}=T_{\text {long }} \sqrt{2(1+\mu)}$
m. 0.5 p

Consider very thin cylindrical layers of radius x and thickness $\mathrm{d} x$. When the cylinder is twisting, each one of them is subject to a very small shear.
$T_{\text {twist }}=\pi L \sqrt{\frac{\rho}{3 G}}$
n. 1 p

Let α be a very small angle with witch one cap of the cylinder rotates with respect to the other. Then the slanting angle of a cylindrical layer is:

$$
x \alpha=L \gamma \Rightarrow \gamma=\frac{x}{L} \alpha
$$

The corresponding shear stress is

$$
\tau=G \frac{x}{L} \alpha
$$

The elementary shear force acting on the cap is
$\mathrm{d} F=\tau \mathrm{d} S=G \frac{x}{L} \alpha 2 \pi x \mathrm{~d} x$
The corresponding elementary torque is
$\mathrm{d} M=\mathrm{d} F \cdot x=\frac{2 \pi G \alpha x^{3} \mathrm{~d} x}{L}$
$M=\frac{2 \pi G \alpha}{L} \int_{0}^{R} x^{3} \mathrm{~d} x=\frac{2 \pi G R^{4} \alpha}{4 L} \Rightarrow C=\frac{\pi G R^{4}}{2 L}=\frac{\pi E R^{4}}{4 L(1+\mu)}$

