PROBLEM No. 1
a. $1 p$

From the symmetry of the situation we take the magnetomotive force along a circular path of radius $r$, centered on the wire.
$\oint \vec{B} \overrightarrow{\mathrm{~d} l}=2 \pi r B=\mu_{0} I \Rightarrow B=\frac{\mu_{0} I}{2 \pi r}$

b. 1.5 p

Consider two elements $\mathrm{d} x$ of the rod placed symmetrically at distances $x$ from its center. The corresponding forces acting on them are:
$\mathrm{d} F^{\prime}=\frac{\mu_{0} I I^{\prime} \mathrm{d} x}{2 \pi(d-x \sin \alpha)}$
$\mathrm{d} F^{\prime \prime}=\frac{\mu_{0} I I^{\prime} \mathrm{d} x}{2 \pi(d+x \sin \alpha)}$
The sum of their torques is:
$\mathrm{d} M=\left(\mathrm{d} F^{\prime \prime}-\mathrm{d} F^{\prime}\right) x=-\frac{2 \mu_{0} I I^{\prime} x^{2} \sin \alpha \mathrm{~d} x}{2 \pi\left(d^{2}-x^{2} \sin ^{2} \alpha\right)}$


For very small angles, the total torque is:
$M=\int_{0}^{L / 2}-\frac{\mu_{0} I I^{\prime} \alpha x^{2} d x}{\pi d^{2}}=-\frac{\mu_{0} I I^{\prime} \alpha L^{3}}{24 \pi d^{2}}=\frac{m L^{2}}{12} \ddot{\alpha} \Rightarrow T_{\text {slant }}=2 \pi d \sqrt{\frac{2 \pi m}{\mu_{0} I I^{\prime} L}}$
c. 1 p

Taking path integrals along circular field lines exactly like at the first point, we get:
$B_{\text {IN }}=0$
$B_{\text {OUT }}=\frac{\mu_{0} I}{2 \pi r}$

d. 0.5 p

The above argument keeps holding, and the results are:
$B_{\text {WIRE SIDE }}=\frac{\mu_{0} I}{2 \pi r}$
$B_{\text {OTHER SIDE }}=0$
e. 1 p
$J(r)=\frac{I}{2 \pi r}$
$\Delta B_{\|}=B_{\| \text {OTHERSIDE }}-B_{\| \text {WIRESIDE }}=0-\left(-\frac{\mu_{0} I}{2 \pi r}\right)=\mu_{0} J$

f. 1.5 p

Consider a small region of the plane having dimensions $\mathrm{d} a$ along $J$ and $\mathrm{d} b$ across $J$.
$J=\frac{B_{2}-B_{1}}{\mu_{0}}$
Let $B_{0}$ be the external magnetic field and $B^{\prime}$ the field generated by the conducting plane.
$\left.\begin{array}{l}B_{1}=B_{0}-B^{\prime} \\ B_{2}=B_{0}+B^{\prime}\end{array}\right\} \Rightarrow B_{0}=\frac{B_{1}+B_{2}}{2}$

$\mathrm{d} F=\mathrm{d} I \cdot \mathrm{~d} a \cdot B_{0}=J \cdot \mathrm{~d} b \cdot \mathrm{~d} a \frac{B_{1}+B_{2}}{2}=\frac{B_{2}-B_{1}}{\mu_{0}} \mathrm{~d} S \frac{B_{1}+B_{2}}{2} \Rightarrow p=\frac{\mathrm{d} F}{\mathrm{~d} S}=\frac{B_{2}^{2}-B_{1}^{2}}{2 \mu_{0}}$
g. 0.5 p

Just as before,
$B_{\text {IN }}=0$
$B_{\text {OUT }}=\frac{\mu_{0} I}{2 \pi r}$
h. 1 p

This time the path integrals go the other way around.
$B_{\text {IN }}=\frac{\mu_{0} I}{2 \pi r}$
$B_{\text {OUT }}=0$
i. 1 p

Consider two elements $\mathrm{d} l$ of the wire, placed symmetrically at a distance $l$ from the center of the wire. Their contributions to the magnetic field in the mediator plane are equal:
$|\overrightarrow{\mathrm{d} B}|=\frac{\mu_{0} I \mathrm{~d} l \sin \left(90^{\circ}-\beta\right)}{4 \pi r^{2}}=\frac{\mu_{0} I \mathrm{~d} l}{4 \pi d^{2}} \cos ^{3} \beta$
$l=d \tan \beta \Rightarrow d l=\frac{d}{\cos ^{2} \beta} d \beta \Rightarrow|\overrightarrow{\mathrm{~d} B}|=\frac{\mu_{0} I}{4 \pi d} \cos \beta \mathrm{~d} \beta$
$B=2 \int_{0}^{\alpha} \frac{\mu_{0} I}{4 \pi d} \cos \beta d \beta=\left.\frac{\mu_{0} I}{2 \pi d} \sin \beta\right|_{0} ^{\alpha}=\frac{\mu_{0} I}{\pi L} \frac{\sin ^{2} \alpha}{\cos \alpha}$


## j. 1p

From a point in the equatorial plane, the axis of the poles of the sphere is seen under an angle $2 \alpha$, with $\tan \alpha=R / r$.
Outside, the sphere behaves similarly to an electric current flowing directly from one pole to the other through a wire connecting the poles directly:
$B_{\text {OUT }}(r)=\frac{\mu_{0} I}{2 \pi} \frac{R}{r} \frac{1}{\sqrt{r^{2}+R^{2}}}$
Inside, the sphere behaves similarly to two semi-infinite straight conductors connecting the two poles of the sphere and carrying the current $I$ in the opposite direction:

$B_{\text {IN }}(r)=\frac{\mu_{0} I}{2 \pi r}\left(1-\frac{R}{\sqrt{r^{2}+R^{2}}}\right)$

