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3. FUNDAMENTS OF GENERAL RELATIVITY 
 

 

Einstein declared that the idea of the Equivalence Principle (1907) was "the most 

fortunate thought (die glückichste Gedanken) of my life". He recalls that "I was sitting 

in a chair in the patent office at Bern when all of a sudden a thought occurred to me: if 

a person falls freely, he will not feel his own weight. I was startled. This simple 

thought made a deep impression on me. It impelled me toward a theory of 

gravitation." 

So, if an observer is in free fall, he can be regarded as an inertial reference frame in 

which the gravitational field is abolished. Unfortunately, since different observers in 

space and time would be falling at different rates and/or in different directions, 

Einstein realized that one will have to use only local reference frames, so that inside 

each of them the acceleration due to gravity would be constant in both magnitude and 

direction. 

Consequently, consider a point-like observer of negligible but nonzero mass in the 

vicinity of a massive object of mass M. If the massive object's gravitational field is 

not too strong, and in the absence of other forces, the observer will move along a 

gravitational field line with an acceleration equal in each point to the gravitational 

acceleration in that particular point. However, if mass M is sufficiently large, the 

notion of gravitational field loses meaning and one is forced to work instead with 

general relativistic concepts. What remains true, however, is that in situations with 

planar symmetry the elementary spacetime interval can be written as 
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where dt' is the infinitesimal time interval measured by the observer's clock. In 

general f and g are functions of the spacetime coordinates. Thus, the observed 

elementary displacements dx can be regarded as being affected by some local 

shrinking factor, and the corresponding times dt needed to accomplish the said 

displacements can be considered as being affected by some local stretching factor. 

So the difficulty arising in General Relativity is the fact that the known expression for 

ds
2
 (called the Minkowski metric), in which there are no variable factors whatsoever, 

no longer holds. In what follows, we will address the simplest possible situation and 

we will try to describe the events in spacetime using other sets of coordinates (or, more 

correctly, parameters) than the usual ones, with corresponding shrinking/stretching 

factors. These will lead us to other more suitable expressions for the spacetime metric ds
2
. 

 

Let us consider a point-like object of rest mass m0, initially (t = t' = 0 s) at rest on the 

x-axis in a point x0 = c
2
/a'. It now starts "falling freely" in the positive direction of the 

axis, so that at any time the proper acceleration experienced in an inertial reference 

frame momentarily co-moving with the object is constant, a'. 

a. Write down the expression of the acceleration of the body in the "gravitational 

field" reference frame, in terms of its "falling" velocity v, a' and c. Show that the net 

force acting upon the body is constant. 

b. Find the expression of v in terms of t, a' and c. 

(Hint: in the integral, take v to be proportional to a trigonometric function.) 
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For what follows, we need to define the hyperbolic functions sinh, cosh and tanh: 
def def defe e e e sinh

sinh ; cosh ; tanh
2 2 cosh

x x x x x
x x x

x

− −− +
= = = . 

Of course, there are also appropriate definitions for the inverse hyperbolic functions 

arcsinh, arccosh and arctanh. 

c. Find the expression of the proper time t' of the "falling" body in terms of t, a' and c. 

(Hint: in the integral, take t to be proportional to a hyperbolic function. Denote the 

argument of this function by τ.) 

As you can see, τ is proportional to t'. In other words, τ = constant describes events 

that are simultaneous from the point of view of the "falling" observer. So the next step 

would be to try to introduce one other parameter, say ρ, so that ρ = constant describes 

phenomena at rest relative to the "falling" observer. 

d. Using the Minkowski metric and the transformation found for the time, find the 

expression of the position x of the body in terms of a', τ and c. 

e. Write down the equation of the worldline (the trajectory) of the body in the two-

dimensional spacetime ct-x (the coordinates y and z are of no particular interest here). 

Draw the graph of ct versus x, plotting also the past and future lightcones of a 

stationary observer found in the origin of the system. (The past lightcone is the region 

of spacetime from which signals can reach the origin; the future lightcone is the 

region of spacetime to which signals can be transmitted from origin.) On the same 

diagram draw the wordline of a stationary object having some coordinate x1 > x0, 

which the "falling" object will pass by at some time. 

f. In light of what we said above, it will prove to be very convenient to choose the 

magnitude of the constant ρ corresponding to our body at rest in a reference frame 

deprived of gravity, say ρ0, as being equal to the spatial constant term intervening in 

the equation found at the previous point. Express ρ0 in terms of a' and c. 

g. Now we will naturally extend these two new „coordinates" found for the "falling" 

body to an (almost) arbitrary event in spacetime. Express x and ct in terms of ρ and τ. 

Conversely, express ρ and τ in terms of x and ct. What is the maximal region of 

spacetime that can be parameterized using these coordinates? 

h. Transform the Minkowski metric in terms of ρ and τ, and identify the factors f and 

g mentioned in the introduction to this problem. 

 

OK, so let's sit back for a moment and get a better look at this new metric you found. 

It is called a Rindler metric, and it looks analogous to the parameterization of a plane 

using polar coordinates. As one would probably expect, its factors f and g are not 

invariant under a Lorentz transformation, but in this most simple case one can 

always return to the Minkowski metric in order to get a globally invariant metric. 

However in general it proves to be impossible to have an invariant metric. 

You also saw that the Rindler metric cannot cover all spacetime. Even if we could 

extend it, one can easily see that an accelerating observer could never get information 

from all spacetime (unlike an inertial observer, whose past lightcone is bound to cover 

at infinity all spacetime). It is said that the events lying on the frontier of the region of 

spacetime from which the "falling" observer can get information make up the so-

called event horizon. 

Finally, since this new metric sees an accelerating body as being at rest, it yields that 

stationary objects in a gravitational field are now in motion relative to the reference 

frame deprived of gravity! 
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i. For the stationary object at x1 mentioned earlier, express its spacetime trajectory in 

coordinates ρ and τ. Draw on a τ versus ρ diagram the "worldlines" of both the objects 

considered, and determine the limit "distance" ∆ρ of the event horizon relative to the 

observer in "free fall". 

j. At the moment the observer starts to "fall", a beacon placed at x0 starts emitting 

very short electromagnetic pulses in the positive direction of the x-axis, separated by 

constant time intervals T0. How many such signals will reach the observer? Write 

down the expression of the wordline of the first one of them in terms of the ρ and τ 

coordinates. Draw on a τ versus ρ diagram the worldlines of the first three signals and 

of the observer. 

k. Obviously the signals received will be sparser and sparser, meaning that they will 

have grater and greater wavelength (smaller and smaller frequency). Let ν0 be the 

frequency of the emitted pulses. Express the receiving time τ in terms of the emitting 

time t, x0 and c. Determine the frequency of the last received signal in terms of ν0, x0, 

T0 and c. 

l. What is the magnitude of the coordinate change rate dρ/dt' of the signals upon 

reception? Plot the graph of this "light speed along the direction of a' in the spacetime 

deprived of gravity" as a function of ρ. 

m. One of the most important aspects when considering dτ as being the time flowing 

in a local inertial frame, is that time at different locations on the x-axis will run 

differently not only as a function of that position, but also as a function of the time t 

elapsed from the moment when the inertial observer started to "fall freely". As the 

points of space pile up forming the event horizon, since the Rindler metric does not 

cover the entire spacetime, the time at those points seems to come to a halt. For 

instance, find the time dt elapsed at x0 as a function of x0, dτ, t and c. Considering a 

second point at a small distance ∆x0 to the right of x0 (i.e. in the direction of the 

gravitational field), determine the relative slowing down of two clocks running in 

those points, ε = ∆(dt)/dt, in terms of x0, ∆x0, t and c. 

n. Now suppose that at t = 0 the observer starts "falling" from rest on a short distance 

∆x0, so we can approximately interpret a' as being the gravitational acceleration g of a 

very weak and almost uniform gravitational field, such the one in the vicinity of the 

surface of the Earth. Estimate the relative slowing down of a clock running at the 

surface of the Earth with respect to another identical clock running at the altitude of 

the ISS, h = 360 km. How much time would that mean for an astronaut spending one 

year on a mission on the ISS? (Neglect the fact that the station is moving around the 

Earth.) 


